爱读书屋 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

“嘶,法是不错,这里面有很多难点需要攻克。如果我没预料错,这个脱胎于橡胶和塑料的裂解技术核心。”

郑院士擦了一下眼睛,目光转向孙鹏飞。

“正是啊,什么都瞒不过专家,因为季总那边先立项的这个,我们拓展开来弄得,所以基本上数据都是来自于这里,然后我们做的裂解实验,非常成功。”

“不过现在也有问题,我们想要知道进去的数据,有些时候方向不是很明朗。您知道我们做这种研发的有时候非常迷茫,目标知道,但是科研方向却充满了迷雾。”

听到郑教授这么说,孙鹏飞赶紧冲着对方拱拱手,眼睛里都是欣喜。

郑教授并未因为孙鹏飞的恭维而流露出丝毫的高兴,而是擦了一下嘴巴,看看图教授,图教授微微点头。

“嗯,只能给你们提供一个大概的参照,具体的参数没法提供。我个人建议,你们选择某个地方的单一煤矿,然后率先利用热裂解进行锚定,然后基于这个参数进行后续的研发。”

“可能你们已经做了,当伱们在做波裂解的时候会发现数据对不上。这点你们不用担心,毕竟微波传输过程中,在分子量层次直接进行裂解,容易出现新物质,这是你们需要进行准备和破解的东西。”

“新物质产生就是有新的波段的,他会间接的成为微波在原有介质中的传播,所以这也是一个渐变的过程,你们必须要懂得如何进行微调补偿才是关键。”

“至于原材料,这几年有些机构,国内外的都集中在褐煤层次,你们也可以尝试一下,毕竟燃烧值高,碳氢化合物的浓度也比较高。”

“我这里有一些国外期刊杂志上面的文章,里面的内容只言片语需要你们进行自我的探索,都是声学领域的专业性质东西。另外过阶段我这有两个研究生毕业,小季,你负责接一下。”

“这是一个容易见到成果的领域,我建议你们做好准备,这中间涉及到的内容很多,不光是你们现在看到的裂解,还涉及到分子键重组……”

郑教授嘴上说能够给与的指导有限,实际上却给了季东来以及孙鹏飞重要的方向。

尤其在微波能量集中层级,波长,以及物性方面,很多内容都是两人第一次听到。

首先微波本身是电场和磁场的组合,不是热量,但在介质中可以转化为热量。当微波作用于介电材料时,产生电子极化、原子极化、界面极化及偶极转向极化。

电子极化和原子极化的建立及消除所需时间比微波电场反转的时间要短得多,因而不会产生微波加热。

界面极化及偶极转向极化产生的极化强度矢量落后于电场一个角度,产生与电场同相的电流,构成了材料内部的功率耗散,进而转换成热能。

即,微波加热依靠介质材料在微波场中的极化损耗产生热能,热量产生于材料内部而非来自外部加热源。

分子原子以及化学键之间的结合,说的模糊一点需要能量,引力。

实际上引力在专业领域就是磁性,这点在对国外材料翻译的时候有些人是频繁的弄错,国内的化学界没少闹出笑话,尤其只读书不求甚解的很多人。

微波作用在碳氢键身上,给分子键更多的矢量力,让这些分子键具有更多的方向性,利用磁性让这些分子重新排列,进而产出更多的不同产品。

真可谓,用微波真的可以做成上帝做过的事情。

按照实验室的数据微波是频率在0.3ghz~300ghz的电磁波,通常用于加热的微波频率为915mhz和2450mhz。

当电磁波遇到物料时,电磁波可以被反射、穿透、吸收或这三种作用的任意组合,不同物料下微波的3种响应。

电磁波遇到微波透明体或微波绝缘体,微波通过但未被吸收,如玻璃、塑料和瓷器等绝缘体;电磁波遇到介于绝缘体与导体之间的物质,能够被吸收;电磁波遇到微波反射体或微波导体,微波被反射,大多数导体都能够反射微波,如铁、铝等金属。

除此之外,混合吸收材料作为复合多相材料,至少有一个相作为吸收相(高介电损耗材料),而其他相是传输相(低介电损耗材料),这种材料充分利用了微波的选择性加热特性,可加热特定部件,同时使周围材料相对不受影响。

这就要求季东来的发生设备需要进行新材料的介入,林林总总的今天过郑教授介绍,季东来推测,一旦微波裂解煤炭这项技术攻克了,至少能够产生五百项专利。

光是发生器材料的研制,在整个集团来说也是一个大项目。

至于中间的热裂解生产线改造,专业人才培养,新物质收集,和其他化工领域进行对接都是新的尝试,季东来知道自己的事大了。

整个会面,郑教授讲解的东西很杂,但是每一个标点符号都是干活,季东来和孙鹏飞收获满满。

临走的时候,郑教授让人把一些非重要资料签字解密给对方带走,季东来千恩万谢,把家里那边带来的灵芝和海鲜给郑教授一帮人留下,毕竟不能让人白忙。

“你这个孩子,商业上的东西弄到这里,不纯粹了……”

望着季东来送上来的东西,郑教授直皱眉。

整个科研院所,尤其郑教授级别的教授,这些东西根本不是稀罕物。

“郑教授,知道你们都不缺少这些东西,只不过是我们的一点小心意,下次您去大连那边疗养记得只会我们,咱们一定尽地主之谊,我带老师先走了,郑教授。”

面对郑教授,季东来一直满面堆笑。

对于科研院所的这些大能,季东来打心眼里尊敬,回头看到那座巨大的埋头铸剑标志,季东来让车子尽量放缓前进的速度,脑海中再次出现亡妻的音容笑貌,此时对那个不要命的丫头多了很多敬意。

“小季,我这边还有个会,就不陪你们了。你说养猪的那件事别忘了,我过阶段会去液县看看。”

爱读书屋推荐阅读:王者归来重生后我嫁给了残疾大佬极品全能学生天命之人随身带着一亩地天赋御兽师在超能世界做大佬陆先生偏要以婚相许修炼万倍增幅,我成了万族噩梦!文娱:我的明星女友又甜又御重生相师:名门第一继承人神器召唤人女神老婆爱上我都市无敌,我有七个恶魔师傅邪气兵皇混花都癌症晚期离婚,岳母半夜敲门小福包在年代文里被宠翻了都市鉴宝天王一身神级被动,从转职开始无敌妖孽妙手小村医娱乐:开局和功夫巨星八角笼阿姨比我大了十八岁四合院:许大茂傻柱你们要老婆不灵烛师我为穿越者跑腿,惊动了国家爸爸全民巨塔:你说你的幸运很低?非宠不可:傲娇医妻别反抗赶海:从幸运赶海夹开始暴富辞职之后抛夫弃子求真爱,被白月光渣了你找我?大院人家我的贴身校花顾云初夜凌羽无敌升级王从包工头到一方高官离婚后,我竟然长生了新说钮一篇血色浪漫之我是钟跃民都市太危险:我苟在村里成神我是一条小青龙,开局要求上户口嫂子,我不是真的傻子!六零小甜妻校园青春之混的那些年对手秦云混沌事务所身份能升级,开局平行世界当皇帝九公主她又美又飒楚倾歌最强人圣光并不会保佑你
爱读书屋搜藏榜:致命赛程:二十轮的博弈阿聪和阿呆精英仙妻:总裁老公宠上天我有一座随身农场重生肥妻:首长大人,强势宠!重生九零小俏媳穿成八零福运小萌包娱乐:重生05,开创顶流时代至尊小神医流年的小船恶龙枷锁清纯校花?当真有那么清纯吗?脱下马甲就是大佬我靠切切切当上太医令剧本恋综里爆红,影帝这热度她不想蹭啊深海有渔歌重生,开局胁迫高冷天后我只想在未来躺平,没想成为大佬练假成真,我真不是修仙者灵气复苏:我,杀敌就变强!全民打宝:幸运爆率疯狂飙!穿书之不可能喜欢男主全球性闹鬼事件神棍俏娘子:带着皇子去种田沈先生命有桃花UZI复出后,IG和RNG同时发来了合同穿成炮灰原配后把权臣娇养了终极一班之签到系统开挂无敌战力情意绵绵汐朝高武:我的影子能弑神我能真人下副本骑士传奇,我的眼中只有古朗基医品凤途我家后院的时空来客穿书之女二要逆袭凌宠我真的很想堕落啊带着系统征服世界吧!岁月逆流重返十八每天奖励一万亿,我的钱堆积如山神豪从开滴滴拒绝美女开始神武都市农门空间:我娇养了首辅大反派玩美房东暗帝:风华绝代之世子妃从恋综开始,成为华娱全民偶像神壕系统之娱乐无极限我负责吃奶直播间十亿网友杀疯了斗兽场之风起云涌
爱读书屋最新小说:预支百万年功力,休学的我终成武神!重生80:我带着狼崽子寻猎大山娱乐:大明厂公的我,成了影帝强龙崛起,你们哭什么?神医下山,我有五个绝美师父她靠我的体温戒断抑郁洞房花烛夜妻子要去陪初恋男友抗战:穿越淞沪军阀崛起我和女书记醉酒后,从此平步青云恋综:只想做军师的我被姐姐倒追穿越60年代,我有九层宝塔空间绝世战龙中医:直播看病观众都慌了偶像练习生:从大佬到全民偶像神豪,开局拿下极品辣妹!重生从黄埔开始超能纪元:我能沟通万物系统内卷,我靠杀猪斩神明!高冷校花学姐,最终成了甜妹老婆说好只是假情侣,警花你怎么来真的?乡野神医好逍遥重生娶了清纯初恋后,再度发家致富!我做的电子女友太逼真,玩家氪疯下山被未婚妻背刺,我成神医后她又后悔了?别人艰苦抗战,你横推百万倭寇?四合院之这个男人没有外挂沪海:开局水警局局长三艘战列舰九州神婿亲手送我入狱,我鉴宝翻身你哭什么?坏了!我成后悔文男主了恋爱合约结束,我和前任妹妹闪婚了哪个大学校花漂亮,就去哪里摆摊按摩带法术,富婆群彻底炸锅了重生78:弟弟顶替我上大学,开局就分家!河边茅草屋的秘密人间武圣新婚夜你带白月光滚床单,我离开你哭什么?出狱后,我成了前妻仰望的神别人穿越开挂,我穿越成反派被虐出花重生1960:赶山打猎,我让家人顿顿吃肉86年:五个嫂子八个孩子要我养订婚被背刺,你回来求我干什么?末世之氪金系统暗巷3:浴火迎娶傻千金后,女战神求我离婚重生65,从钓鱼佬开始梁肉满仓老舅别怕,十八个外甥保驾护航!两界倒卖,开局矿泉水换黄金!线上互怼三年的网友竟是校花学姐命骨被挖,觉醒SSS级哪吒杀神系统